Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Microb Genom ; 10(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38512312

ABSTRACT

A total of 14 973 alleles in 29 661 sequenced samples collected between March 2021 and January 2023 by the Mexican Consortium for Genomic Surveillance (CoViGen-Mex) and collaborators were used to construct a thorough map of mutations of the Mexican SARS-CoV-2 genomic landscape containing Intra-Patient Minor Allelic Variants (IPMAVs), which are low-frequency alleles not ordinarily present in a genomic consensus sequence. This additional information proved critical in identifying putative coinfecting variants included alongside the most common variants, B.1.1.222, B.1.1.519, and variants of concern (VOCs) Alpha, Gamma, Delta, and Omicron. A total of 379 coinfection events were recorded in the dataset (a rate of 1.28 %), resulting in the first such catalogue in Mexico. The most common putative coinfections occurred during the spread of Delta or after the introduction of Omicron BA.2 and its descendants. Coinfections occurred constantly during periods of variant turnover when more than one variant shared the same niche and high infection rate was observed, which was dependent on the local variants and time. Coinfections might occur at a higher frequency than customarily reported, but they are often ignored as only the consensus sequence is reported for lineage identification.


Subject(s)
COVID-19 , Coinfection , Humans , Mexico/epidemiology , Coinfection/epidemiology , Alleles , SARS-CoV-2/genetics , COVID-19/epidemiology
2.
Vaccines (Basel) ; 12(1)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38250901

ABSTRACT

Abdominal obesity is highly prevalent in Mexico and has a poor prognosis in terms of the severity of coronavirus disease (COVID-19) and low levels of antibodies induced by infection and vaccination. We evaluated the humoral immune response induced by COVID-19 and five different vaccination schedules in Mexican individuals with abdominal obesity and the effects of other variables. This prospective longitudinal cohort study included 2084 samples from 389 participants. The levels of anti-S1/S2 and anti-RBD IgG antibodies were measured at various time points after vaccination. A high prevalence of hospitalization and oxygen use was observed in individuals with abdominal obesity (AO) who had COVID-19 before vaccination; however, they also had high levels of anti-S1/S2 and anti-RBD-neutralizing IgG antibodies. The same was true for vaccination-induced antibody levels. However, their longevity was low. Interestingly, we did not observe significant differences in vaccine reactogenicity between abdominally obese and abdominally non-obese groups. Finally, individuals with a higher body mass index, older age, and previous COVID-19 had higher levels of antibodies induced by COVID-19 and vaccination. Therefore, it is important to evaluate other immunological and inflammatory factors to better understand the pathogenesis of COVID-19 in the presence of risk factors and to propose effective vaccination schedules for vulnerable populations.

3.
Microb Genom ; 9(12)2023 Dec.
Article in English | MEDLINE | ID: mdl-38112714

ABSTRACT

In Mexico, the BA.4 and BA.5 Omicron variants dominated the fifth epidemic wave (summer 2022), superseding BA.2, which had circulated during the inter-wave period. The present study uses genome sequencing and statistical and phylogenetic analyses to examine these variants' abundance, distribution, and genetic diversity in Mexico from April to August 2022. Over 35 % of the sequenced genomes in this period corresponded to the BA.2 variant, 8 % to the BA.4 and 56 % to the BA.5 variant. Multiple subvariants were identified, but the most abundant, BA.2.9, BA.2.12.1, BA.5.1, BA.5.2, BA.5.2.1 and BA.4.1, circulated across the entire country, not forming geographical clusters. Contrastingly, other subvariants exhibited a geographically restricted distribution, most notably in the Southeast region, which showed a distinct subvariant dynamic. This study supports previous results showing that this region may be a significant entry point and contributed to introducing and evolving novel variants in Mexico. Furthermore, a differential distribution was observed for certain subvariants among specific States through time, which may have contributed to the overall increased diversity observed during this wave compared to the previous ones. This study highlights the importance of sustaining genomic surveillance to identify novel variants that may impact public health.


Subject(s)
COVID-19 , Humans , Mexico/epidemiology , COVID-19/epidemiology , Phylogeny , SARS-CoV-2/genetics
4.
Diagnostics (Basel) ; 13(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37627889

ABSTRACT

Obesity is associated with an increased risk of contracting infections. This study aimed to estimate the risk of COVID-19 infection associated with obesity and to assess its role in the specific antibody response against SARS-CoV-2 in 2021. This study included 980 participants from the State of Mexico who participated in a serological survey where they were tested for SARS-CoV-2 IgG anti-S1/S2 and anti-RBD antibodies and asked for height, weight, and previous infection data via a questionnaire. Of the cohort of 980 participants, 451 (46.02%) were seropositive at the time of recruitment (45.2% symptomatic and 54.8% asymptomatic). The risk of SARS-CoV-2 infection with obesity was 2.18 (95% CI: 1.51-3.16), 2.58 (95% CI: 1.63-4.09), and 1.88 (95% CI: 1.18-2.98) for seropositive, asymptomatic, and symptomatic individuals, respectively, compared to those with normal weight. Anti-S1/S2 and anti-RBD IgG antibodies tended to be higher in overweight and obese participants in the seropositive group and stratified by different obesity classes. Additionally, there was a positive correlation between anti-S1/S2 and anti-RBD IgG antibodies and BMI in both men and women in the seropositive group. Obesity is an independent risk factor for SARS-CoV-2 infection when adjusted for confounding variables; however, the relationship between BMI and anti-S1/S2 and anti-RBD IgG antibody levels differed markedly in the presence or absence of symptoms.

5.
Microorganisms ; 11(7)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37512817

ABSTRACT

Probiotics play an important role against infectious pathogens, such as Escherichia coli (E. coli), mainly through the production of antimicrobial compounds and their immunomodulatory effect. This protection can be detected both on the live probiotic microorganisms and in their inactive forms (paraprobiotics). Probiotics may affect different cells involved in immunity, such as macrophages. Macrophages are activated through contact with microorganisms or their products (lipopolysaccharides, endotoxins or cell walls). The aim of this work was the evaluation of the effect of two probiotic bacteria (Escherichia coli Nissle 1917 and Bifidobacterium animalis subsp. lactis HN019 on macrophage cell line J774A.1 when challenged with two pathogenic strains of E. coli. Macrophage activation was revealed through the detection of reactive oxygen (ROS) and nitrogen (RNS) species by flow cytometry. The effect varied depending on the kind of probiotic preparation (immunobiotic, paraprobiotic or postbiotic) and on the strain of E. coli (enterohemorrhagic or enteropathogenic). A clear immunomodulatory effect was observed in all cases. A higher production of ROS compared with RNS was also observed.

6.
Microorganisms ; 11(6)2023 May 30.
Article in English | MEDLINE | ID: mdl-37374943

ABSTRACT

SARS-CoV-2 is the causal agent of COVID-19; the first report of SARS-CoV-2 infection was in December 2019 in Wuhan, China. This virus has since caused the largest pandemic in history, and the number of deaths and infections has been significant. Nevertheless, the development of vaccines has helped to reduce both deaths and infections. Comorbidities such as diabetes, hypertension, heart and lung diseases, and obesity have been identified as additional risk factors for infection and the progression of COVID-19. Additionally, latent toxoplasmosis has been reported to be a risk factor for acquiring COVID-19 in some studies, but other studies have suggested a negative association between these two infections. Furthermore, in patients after vaccination or with COVID-19 and coinfection, an increase in the lethality and mortality of toxoplasmosis has been observed. Therefore, the objective of the current study is to determine the association of toxoplasmosis with COVID-19 in patients diagnosed with COVID-19. Serum samples from 384 patients previously diagnosed with COVID-19 using IgG antibodies against the S1/S2 antigens of SARS-CoV-2 were collected. Subsequently, anti-Toxoplasma IgG and IgM antibodies were analyzed with ELISA. Statistical analysis was performed using SPSS Version 20.0 frequencies, percentages, 2 × 2 tables, and the Pearson correlation coefficient. IgG and IgM anti-Toxoplasma antibodies were positive in 105/384 (27.34%) and (26/191) 13.6% of patients, respectively. The positivity for both infections was higher in patients aged >40 years old. Subjects who were overweight or obese were mainly positive for both IgG antibodies against S1/S2 SARS-CoV-2 and Toxoplasma antibodies. In conclusion, the coinfection rate was 21.7%. The prevalence of S1/S2 SARS-CoV-2 was 308/384 (80.2%), and the percentage of Toxoplasma antibodies was 27.34%.

7.
Front Public Health ; 11: 1095202, 2023.
Article in English | MEDLINE | ID: mdl-36935725

ABSTRACT

Latin America is one of the regions in which the COVID-19 pandemic has a stronger impact, with more than 72 million reported infections and 1.6 million deaths until June 2022. Since this region is ecologically diverse and is affected by enormous social inequalities, efforts to identify genomic patterns of the circulating SARS-CoV-2 genotypes are necessary for the suitable management of the pandemic. To contribute to the genomic surveillance of the SARS-CoV-2 in Latin America, we extended the number of SARS-CoV-2 genomes available from the region by sequencing and analyzing the viral genome from COVID-19 patients from seven countries (Argentina, Brazil, Costa Rica, Colombia, Mexico, Bolivia, and Peru). Subsequently, we analyzed the genomes circulating mainly during 2021 including records from GISAID database from Latin America. A total of 1,534 genome sequences were generated from seven countries, demonstrating the laboratory and bioinformatics capabilities for genomic surveillance of pathogens that have been developed locally. For Latin America, patterns regarding several variants associated with multiple re-introductions, a relatively low percentage of sequenced samples, as well as an increment in the mutation frequency since the beginning of the pandemic, are in line with worldwide data. Besides, some variants of concern (VOC) and variants of interest (VOI) such as Gamma, Mu and Lambda, and at least 83 other lineages have predominated locally with a country-specific enrichments. This work has contributed to the understanding of the dynamics of the pandemic in Latin America as part of the local and international efforts to achieve timely genomic surveillance of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Latin America/epidemiology , Pandemics , Genotype
8.
Microbiol Spectr ; 11(1): e0237622, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36602375

ABSTRACT

The WHO has approved the use of several vaccines during the COVID-19 pandemic; experience over the last 2 years has indicated that dose demand can only be covered using more than one design. Therefore, having scientific evidence of the performance of the different vaccines applied in a country is highly relevant. In Mexico, 5 vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were used, allowing a cohort study to analyze the generation of anti-S1/S2 IgG antibodies and anti-RBD antibodies with neutralizing activity at 0, 21, 90, and 180 days after vaccination. Five groups of participants were formed on the basis of the type of vaccine received and were divided on the basis of whether they previously had or did not have COVID-19. After completing the vaccination schedule, the seroprevalence was 95.5, 97.5, 81.0, 95.2, and 90.0% (BNT162b2, AZD1222, Convidecia, Sputnik V, and CoronaVac, respectively). Among the participants without COVID-19 prior to vaccination, the largest amount of antibodies in the 90-day period was observed in the BNT162b2 group, and the amount of antibodies in the Sputnik V group decreased the least over time. Even though the percentages of seroconversion obtained in this study were lower than those currently reported in other parts of the world, the tested vaccines are able, in most cases, to induce a good production of IgG antibodies anti-S1/S2 and neutralizing capacity. The fact that there are people who have not produced antibodies during the study leaves open some questions that must be investigated to avoid the appearance of serious cases of COVID-19. IMPORTANCE Since the start of the vaccination programs against COVID-19 in 2020, it was evident that due to global shortages, the demand for the dose required in Mexico could only be covered by acquiring different vaccines. Therefore, determining the effectiveness of these and the longevity of acquired immunity is extremely important in a scenario where SARS-CoV-2 circulation becomes endemic and booster doses are required periodically. Our data reveal significant differences both in the generation of antibodies as well as in their longevity for the vaccines applied in the country but suggest that, in general, the Mexican population can reach a high capacity to neutralize the virus, therefore, regarding less the variant for which they were designed.


Subject(s)
COVID-19 , Vaccines , Humans , SARS-CoV-2 , Immunoglobulin G , ChAdOx1 nCoV-19 , COVID-19/prevention & control , BNT162 Vaccine , Cohort Studies , Mexico/epidemiology , Pandemics , Seroepidemiologic Studies , Vaccination , Antibodies, Viral , Antibodies, Neutralizing
9.
Viruses ; 15(1)2023 01 15.
Article in English | MEDLINE | ID: mdl-36680283

ABSTRACT

PURPOSE: The Omicron subvariant BA.1 of SARS-CoV-2 was first detected in November 2021 and quickly spread worldwide, displacing the Delta variant. In this work, a characterization of the spread of this variant in Mexico is presented. METHODS: The time to fixation of BA.1, the diversity of Delta sublineages, the population density, and the level of virus circulation during the inter-wave interval were determined to analyze differences in BA.1 spread. RESULTS: BA.1 began spreading during the first week of December 2021 and became dominant in the next three weeks, causing the fourth COVID-19 epidemiological surge in Mexico. Unlike previous variants, BA.1 did not exhibit a geographically distinct circulation pattern. However, a regional difference in the speed of the replacement of the Delta variant was observed. CONCLUSIONS: Viral diversity and the relative abundance of the virus in a particular area around the time of the introduction of a new lineage seem to have influenced the spread dynamics, in addition to population density. Nonetheless, if there is a significant difference in the fitness of the variants, or if the time allowed for the competition is sufficiently long, it seems the fitter virus will eventually become dominant, as observed in the eventual dominance of the BA.1.x variant in Mexico.


Subject(s)
COVID-19 , Epidemics , Humans , Mexico/epidemiology , COVID-19/epidemiology , SARS-CoV-2/genetics
10.
Ophthalmic Epidemiol ; 30(4): 400-406, 2023 08.
Article in English | MEDLINE | ID: mdl-36184872

ABSTRACT

OBJECTIVE: In this study, we investigated the impact of the SARS-CoV-2 vaccination on seroprevalence in a cohort of healthcare workers (HCW) at an ophthalmic medical center. METHODS: IgG antibodies against the N, S1, and S2 antigens of SARS-CoV-2 as well as their serum neutralizing activity were determined. RESULTS: In the present study, we observed that 98.4% of HCW were seropositive for S1/S2 proteins of SARS-CoV-2 due to the national vaccination program. Interestingly, 78.4% of the participants had anti-N protein antibodies, suggesting previous COVID-19 infection. We also evaluated the neutralizing antibodies and found that the mean value was high (90.7%). CONCLUSION: These results indicate that our HCWs cohort presented a robust hybrid humoral response owing to the massive national vaccination program and natural infections.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Seroepidemiologic Studies , COVID-19 Vaccines , Health Personnel
11.
Viruses ; 14(6)2022 05 27.
Article in English | MEDLINE | ID: mdl-35746637

ABSTRACT

In this study, we analyzed the sequences of SARS-CoV-2 isolates of the Delta variant in Mexico, which has completely replaced other previously circulating variants in the country due to its transmission advantage. Among all the Delta sublineages that were detected, 81.5 % were classified as AY.20, AY.26, and AY.100. According to publicly available data, these only reached a world prevalence of less than 1%, suggesting a possible Mexican origin. The signature mutations of these sublineages are described herein, and phylogenetic analyses and haplotype networks are used to track their spread across the country. Other frequently detected sublineages include AY.3, AY.62, AY.103, and AY.113. Over time, the main sublineages showed different geographical distributions, with AY.20 predominant in Central Mexico, AY.26 in the North, and AY.100 in the Northwest and South/Southeast. This work describes the circulation, from May to November 2021, of the primary sublineages of the Delta variant associated with the third wave of the COVID-19 pandemic in Mexico and highlights the importance of SARS-CoV-2 genomic surveillance for the timely identification of emerging variants that may impact public health.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Mexico/epidemiology , Pandemics , Phylogeny , SARS-CoV-2/genetics
12.
Microbiol Spectr ; 10(2): e0224021, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35389245

ABSTRACT

During the coronavirus disease 2019 (COVID-19) pandemic, the emergence and rapid increase of the B.1.1.7 (Alpha) lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first identified in the United Kingdom in September 2020, was well documented in different areas of the world and became a global public health concern because of its increased transmissibility. The B.1.1.7 lineage was first detected in Mexico during December 2020, showing a slow progressive increase in its circulation frequency, which reached its maximum in May 2021 but never became predominant. In this work, we analyzed the patterns of diversity and distribution of this lineage in Mexico using phylogenetic and haplotype network analyses. Despite the reported increase in transmissibility of the B.1.1.7 lineage, in most Mexican states, it did not displace cocirculating lineages, such as B.1.1.519, which dominated the country from February to May 2021. Our results show that the states with the highest prevalence of B.1.1.7 were those at the Mexico-U.S. border. An apparent pattern of dispersion of this lineage from the northern states of Mexico toward the center or the southeast was observed in the largest transmission chains, indicating possible independent introduction events from the United States. However, other entry points cannot be excluded, as shown by multiple introduction events. Local transmission led to a few successful haplotypes with a localized distribution and specific mutations indicating sustained community transmission. IMPORTANCE The emergence and rapid increase of the B.1.1.7 (Alpha) lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) throughout the world were due to its increased transmissibility. However, it did not displace cocirculating lineages in most of Mexico, particularly B.1.1.519, which dominated the country from February to May 2021. In this work, we analyzed the distribution of B.1.1.7 in Mexico using phylogenetic and haplotype network analyses. Our results show that the states with the highest prevalence of B.1.1.7 (around 30%) were those at the Mexico-U.S. border, which also exhibited the highest lineage diversity, indicating possible introduction events from the United States. Also, several haplotypes were identified with a localized distribution and specific mutations, indicating that sustained community transmission occurred in the country.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genome, Viral , Humans , Mexico/epidemiology , Phylogeny , SARS-CoV-2/genetics
13.
Front Public Health ; 10: 1050673, 2022.
Article in English | MEDLINE | ID: mdl-36711379

ABSTRACT

Background: After the initial outbreak in China (December 2019), the World Health Organization declared COVID-19 a pandemic on March 11th, 2020. This paper aims to describe the first 2 years of the pandemic in Mexico. Design and methods: This is a population-based longitudinal study. We analyzed data from the national COVID-19 registry to describe the evolution of the pandemic in terms of the number of confirmed cases, hospitalizations, deaths and reported symptoms in relation to health policies and circulating variants. We also carried out logistic regression to investigate the major risk factors for disease severity. Results: From March 2020 to March 2022, the coronavirus disease 2019 (COVID-19) pandemic in Mexico underwent four epidemic waves. Out of 5,702,143 confirmed cases, 680,063 were hospitalized (11.9%), and 324,436 (5.7%) died. Even if there was no difference in susceptibility by gender, males had a higher risk of death (CFP: 7.3 vs. 4.2%) and hospital admission risk (HP: 14.4 vs. 9.5%). Severity increased with age. With respect to younger ages (0-17 years), the 60+ years or older group reached adjusted odds ratios of 9.63 in the case of admission and 53.05 (95% CI: 27.94-118.62) in the case of death. The presence of any comorbidity more than doubled the odds ratio, with hypertension-diabetes as the riskiest combination. While the wave peaks increased over time, the odds ratios for developing severe disease (waves 2, 3, and 4 to wave 1) decreased to 0.15 (95% CI: 0.12-0.18) in the fourth wave. Conclusion: The health policy promoted by the Mexican government decreased hospitalizations and deaths, particularly among older adults with the highest risk of admission and death. Comorbidities augment the risk of developing severe illness, which is shown to rise by double in the Mexican population, particularly for those reported with hypertension-diabetes. Factors such as the decrease in the severity of the SARS-CoV2 variants, changes in symptomatology, and advances in the management of patients, vaccination, and treatments influenced the decrease in mortality and hospitalizations.


Subject(s)
COVID-19 , Diabetes Mellitus , Hypertension , Male , Humans , Aged , Infant, Newborn , Infant , Child, Preschool , Child , Adolescent , COVID-19/epidemiology , SARS-CoV-2 , Pandemics , Longitudinal Studies , Mexico/epidemiology , Follow-Up Studies , RNA, Viral , Diabetes Mellitus/epidemiology , Hypertension/epidemiology
14.
Arch Virol ; 166(11): 3173-3177, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34448936

ABSTRACT

SARS-CoV-2 variants emerged in late 2020, and at least three variants of concern (B.1.1.7, B.1.351, and P1) have been reported by WHO. These variants have several substitutions in the spike protein that affect receptor binding; they exhibit increased transmissibility and may be associated with reduced vaccine effectiveness. In the present work, we report the identification of a potential variant of interest, harboring the mutations T478K, P681H, and T732A in the spike protein, within the newly named lineage B.1.1.519, that rapidly outcompeted the preexisting variants in Mexico and has been the dominant virus in the country during the first trimester of 2021.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , COVID-19/transmission , Genome, Viral/genetics , Humans , Mexico/epidemiology , Mutation , Phylogeny , Prevalence , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics
15.
Microorganisms ; 9(4)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33921158

ABSTRACT

Until recently, the incidence of COVID-19 was primarily estimated using molecular diagnostic methods. However, the number of cases is vastly underreported using these methods. Seroprevalence studies estimate cumulative infection incidences and allow monitoring of transmission dynamics, and the presence of neutralizing antibodies in the population. In February 2020, the Mexican Social Security Institute began conducting anonymous unrelated sampling of residual sera from specimens across the country, excluding patients with fever within the previous two weeks and/or patients with an acute respiratory infection. Sampling was carried out weekly and began 17 days before Mexico's first officially confirmed case. The 24,273 sera obtained were analyzed by chemiluminescent-linked immunosorbent assay (CLIA) IgG S1/S2 and, later, positive cases using this technique were also analyzed to determine the rate of neutralization using the enzyme-linked immunosorbent assay (ELISA). We identified 40 CLIA IgG positive cases before the first official report of SARS-CoV-2 infection in Mexico. The national seroprevalence was 3.5% in February and 33.5% in December. Neutralizing activity among IgG positives patients during overall study period was 86.1%. The extent of the SARS-CoV-2 infection in Mexico is 21 times higher than that reported by molecular techniques. Although the general population is still far from achieving herd immunity, epidemiological indicators should be re-estimated based on serological studies of this type.

16.
Microorganisms ; 8(1)2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31947510

ABSTRACT

One of the main characteristics of probiotics is their ability to stimulate and modulate the immune response regardless of their viability. Lactobacillus casei (Lc) can stimulate local and systemic immunity, in addition to the activation of macrophages at sites distant from the intestine. Activated macrophages limit the replication of intracellular protozoa, such as Toxoplasma gondii, through the production of nitric oxide. The present study aimed to evaluate the protection generated by treatment with viable and non-viable Lc in the murine systemic toxoplasmosis model. CD1 male mice were treated with viable Lc (immunobiotic) and non-viable Lc (paraprobiotic), infected with tachyzoites of Toxoplasma gondii RH strain. The reduction of the parasitic load, activation of peritoneal macrophages, inflammatory cytokines, and cell populations was evaluated at 7 days post-infection, in addition to the survival. The immunobiotic and paraprobiotic reduced the parasitic load, but only the immunobiotic increased the activation of peritoneal macrophages, and the production of interferon-gamma (IFN-γ), tumor necrosis factor (TNF), and interleukin-6 (IL-6) while the paraprobiotic increased the production of monocyte chemoattractant protein-1 (MCP-1) and T CD4+CD44+ lymphocytes. Viable and non-viable Lc increases survival but does not prevent the death of animals. The results provide evidence about the remote immunological stimulation of viable and non-viable Lc in an in vivo parasitic model.

17.
Microorganisms ; 7(11)2019 Nov 18.
Article in English | MEDLINE | ID: mdl-31752159

ABSTRACT

Chronic infection with the intracellular parasite Toxoplasma gondii produces an accumulation of cysts in the brain and muscle, causing tissue damage. The cysts in the brain motor regions affect some kinematic locomotion parameters in the host. To localize the brain cysts from Toxoplasma gondii and study the changes in kinematic locomotion in C57BL/6 mice. Female adult C57BL/6 mice were infected orally with 30 ME-49 Toxoplasma gondii cysts. An uninfected group (n = 7) and two infected groups, examined 15 and 40 days postinfection, were used for this study. To evaluate kinematic locomotion, the mice were marked with indelible ink on the iliac crest, hip, knee, ankle, and phalangeal metatarsus of the left and right hindlimbs. At least three recordings were carried out to obtain videos of the left and right hindlimbs. Mice were video recorded at 90 fps at a resolution of 640 × 480 pixels while walking freely in a transparent Plexiglass tunnel. We measured the hindlimb pendular movement and the hindlimb transfer [linear displacement] curves for each step and evaluated them statistically with Fréchet dissimilarity tests. Afterward, the mice were sacrificed, and the brain, heart, skeletal muscle, lung, liver, and kidney were obtained. The different tissues were stained with hematoxylin and eosin for analysis with optical microscopy. Topographic localization of the cysts was made using bregma coordinates for the mouse brain. The cysts were distributed in several brain regions. In one mouse, cyst accumulation occurred in the hippocampus, coinciding with an alteration in foot displacement. The step length was different among the different studied groups.

SELECTION OF CITATIONS
SEARCH DETAIL
...